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Abstract 
Computer Programming forms the basis from which most students of 
information technology ‘launch’ themselves into further endeavours within 
the discipline. However, statistical analysis of students’ performances in 
programming related assessment tasks reveals that the mastery of computer 
programming skills is not easily acquired. This assertion is supported by 
reports of high failure rates in computer programming courses at several 
academic institutes. This trend is also confirmed at the University of 
KwaZulu-Natal (UKZN) where programming related assessments have 
resulted in failure rates as high as 50%. In order to investigate this dilemma, 
a phenomenographic approach is used to discover how students experience 
the phenomenon of computer programming. The investigation is conducted 
with reference to the deep and surface learning styles framework. Student 
responses to interview questions on computer programming are classified 
according to this framework. It was found that at least 50% of the 
respondents adopted a surface approach towards the learning of computer 
programming. A point bi-serial correlation was drawn with the students’ 
performance in a computer programming examination. There was a strong 
correlation between the learning styles adopted by the students and their 
performance in the computer programming examination. 
 
Keywords: Computer programming, deep and surface learning, 
phenomenography, point bi-serial, qualitative, stratified random sampling, 
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pedagogy of computer programming, post-modernism, interpretivism 
 
 
 
Introduction 
The learning of computer programming has been identified as problematic by 
the academic fraternity. Cognisance of this sentiment is attested to by a 
growing number of literary inquisitions that attempt to identify factors that 
may contribute towards obviating this stigmatic attachment. According to 
Efopoulos et al. (2005), there is a growing research impetus in the area of 
computer science education. This has resulted in the emergence of journals 
that have either exclusively focused on the teaching of computer 
programming or have a significant proportion of publications relating to the 
teaching/learning of computer programming (e.g. Computer Science 
Education, International Journal of Human-Computer Studies, Association 
for Computing Machinery (ACM), Journal Storage (JSTOR)). A possible 
explanation for this elevated interest in the teaching/learning of computer 
programming is that:  
 

software construction is a complex, socio-technical, cognitive 
process that requires a combination of technical, social, analytical 
and creative abilities (Rose, Heron & Sofat 2005).  

 
Many studies on the learning of computer programming (e.g. Pea & Kurland 
1984; Kaczmarczyk et al. 2010) allude to the deep misunderstanding of 
programming related concepts by adult novice programmers. Hence, attempts 
at resolving the impasse between novice and expert programming will not be 
an easy task. A consequence of this dilemma is a declining set of standards in 
elementary programming courses coupled with an increase in the failure rates 
(Warren 1991). This trend is also confirmed currently at the University of 
KwaZulu-Natal (UKZN) in the School of Information Systems and 
Technology (IS&T) where programming related assessments have resulted in 
failure rates as high as 50%. These sentiments tend to echo an unequivocal 
belief that the acquisition of competence in computer programming is no 
trivial achievement.  
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The Positivist Paradigm and Computer Programming 
The enigmatic status regarding the pedagogy of computer programming 
seems be perpetuated by the failure of the positivist paradigm to embrace the 
complexities inherent in such studies. The use of empiricism without 
theoretical quality frameworks to underpin research efforts has resulted in a 
paradoxical situation where the combined effort is disparate in nature. 
According to Sheil (1981), the use of empirical methods to underpin research 
in the domain of computer programming has not been conclusive from the 
perspectives of reliability and generalisation. Hazzan et al. (2006) comment 
that: 
 

the ominous tendency of the Hawthorne effect to discredit 
experimental research has resulted in the spawning of post-modern 
methodologies that are empirically qualitative. 

 
Traditionally, computer programming is considered to be a ‘scientific 

activity’. Hence, a natural consequence should be that research in the field 
would have strong inclinations towards positivism. However, Murnane 
(1993: 216) goes on to counter this argument by asserting that: 

 
no studies have shown that students who perform well in the 
traditional sciences have any particular advantages when it comes to 
programming …. [T]he development of a computer language may be 
a scientific process, but the authoring of a program written in that 
language is not. 

 
Another significant contribution that can be added to the ‘mix’ is 

made by Strauss and Corbin (1990:17) who claim that: 
 

qualitative methods are used to better understand phenomenon about 
which little is already known or to gain in-depth information that 
may be difficult to convey quantitatively... embodying a research 
demeanour that is not fully dependent on statistical procedures and 
other means of quantification. 
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According to Sanders, Lewis and Thornhill (2003:83), the invocation 
of qualitative methods would classify a research project as interpretative. 
The interpretive approach embodies an: 
 

understanding of the social world from the ‘inside’, a world which 
considers the minds of people and their interactions with one another 
and their environment (Klopper 2008). 

 
The evidence gathered from these literary sources suggests that 

research into the learning of computer programming should embrace post-
modern philosophies such as interpretivism, as a viable option. This 
embodies a research ethos that accommodates the mixing of diverse ideas 
and methodologies that are qualitative in essence. This assertion is 
corroborated by the claim made by Berglund et al. (2006) that: 

 
the qualitative research paradigm enables the drawing of a more 
solid and significant conclusion about how students learn computing. 

 
 

Research Question 
The current study embraces the ideals of post-modernism and engages the 
phenomenographic research strategy to gain knowledge of the ways in which 
learners come to grips with the concepts and principles of computer 
programming. Phenomenography is defined by Eckerdal, Thune and 
Berglund (2005) as: 
 

an empirical, qualitative research approach where the object of 
interest is how a certain phenomenon is experienced by a certain 
group of people.  

 
The deep and surface theoretical framework is employed to underpin 

this study. A precise research question reads as follows:  
 

• What is the impact of learning styles (as embodied by the deep and 
surface framework for learning) on the acquisition of computer 
programming knowledge? 
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The sub-questions are as follows: 
 

• What is the pre-dominant learning style employed by students 
learning computer programming? 

• What is the correlation between learning styles and students’ 
performance in computer programming assessment? 

 
The Deep and Surface Framework 
There have been many definitions of the concepts of deep and surface 
learning (e.g. Booth & Morton 1997: 34; Martin & Saljo 1976; Rhem 1995; 
Cope & Horan 1998; Hughes & Peiris 2006; Simon et al. 2006; Haripersad 
2010). A common theme in these definitions is that the surface approach to 
learning entails memorisation, rote learning and consumption of knowledge 
from a quantity perspective for the purpose of reproduction at some 
assessment forum (such as an examination). The deep approach to learning 
entails intimate and quality driven understanding of content for the purpose 
of application and extension beyond the factual dimension. Lewandowski et 
al. (2005) cite various studies that are consistent with their assertion that: 
‘experts form abstractions based on deep (semantic) characteristics rather 
than on surface (syntactic) characteristics’. A listing of the characteristics of 
the deep and surface learning style framework gleaned from the sources 
mentioned above entail the following: 
 

• Surface learning is related to passive processing that lacks reflection, 
uses low-level meta-cognitive skills and is extrinsically motivated.  
 

• Deep learning is a product of active processing that is intrinsically 
motivated, reflective, and uses higher-level meta-cognitive strategies.  

 
• Surface learning may result in good memory for facts and 

definitions, but has a limited ability to understand or use them.  
 

• Deep learning, results in facility of thought derived from linking 
newly acquired facts and definitions into a conceptual framework of 
existing knowledge.  
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• Students who use surface learning may do well on tests that assess 
learning through knowledge of facts and definitions; they may not 
understand or be able to apply the memorised and superficially 
processed information.  

 
• Students who use deep learning are able to understand, apply, and 

use information learned.  
 

The impact made by this framework on the learning of computer 
programming cannot be ignored and is corroborated by a study undertaken by 
Booth (2001). Booth investigated the significance of the style of learning on 
the acquisition of competence in computer programming. She classified 
student programmers as either novices or experts. In order to make this 
classification, she conducted interview sessions with students to ascertain 
their level of understanding of computer programming. Individual responses 
were classified as a demonstration of either deep or surface knowledge of 
programming. The outcome of this exercise was an overall classification 
labelling a student as either an expert programmer if the majority of 
responses were classified as deep or a novice programmer if the majority of 
responses were classified as surface. The findings of Booth’s 
phenomenographic study into the understanding of computer programming 
from a deep and surface perspective were that students who approached 
learning to program as learning to code in a programming language or as a 
pre-requisite for simply passing the course exhibited a surface approach to 
learning thereby rendering themselves as novice programmers. In contrast, 
students who focused on understanding the problem domain adequately in 
order to produce a product that could be used in a professional environment 
exhibited deeper learning traits thereby rendering themselves as experts. The 
current study undertook to replicate this study on students in the School of 
IS&T at UKZN. 

 
 

Data Collection 
It is reported in Hoepfl (1997) that interviews are the primary strategy for 
data collection when the phenomenographic approach to research is 
employed. The data collection strategy for the current study is commensurate 
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with the assertion made by Hoepfl and aligned to a similar study conducted 
by Bruce et al. (2006). 

The primary target population consisted of students who had 
completed the ISTN 212 course in computer programming in the School of 
IS&T. This course was offered at the Durban and Pietermaritzburg campuses 
of UKZN. The target population consisted of 261 students. Students were 
informed of the voluntary nature of their participation as well the non-
obligatory demeanour of the interview questions. The interview sample 
consisted of 35 students from the target population who participated in a one 
hour semi-structured interview. In accordance with the sentiments expressed 
by Hoepfl (1997) the objective was to seek information-rich cases that can be 
studied in depth. This is an embodiment of an approach that prioritises the 
depth that can be ascertained from the data source at the expense of the 
volume of data.  

According to the literature several variables could qualify as potential 
detractors to any focused study on the learning of computer programming. 
The significant factors identified were the influence of culture (Bishop-Clark 
1995; Rose, Heron & Safat 2005), previous programming experience (Byrne 
& Lyons 2001; Hagan & Markham 2002; Wilson & Shrock 2002; Allert 
2004; Bergin & Reilly 2005; Govender 2009), gender (Bennedsen & 
Caspersen 2005; Lau & Yuen 2009) and mathematics and problem solving 
ability (Pillay & Jugoo 2005; Pioro 2006; Bennedssen & Caspersen 2008). In 
order to accommodate and possibly minimise the influence of these factors, a 
stratified random sampling strategy was employed. Interviewees were 
selected in order to obtain adequate representation from the spectrum of 
variables identified. Twenty students from each campus (Durban and 
Pietermaritzburg) of UKZN were invited to participate in the interview 
sessions. There was one student from the Pietermaritzburg campus and four 
students from the Durban campus who were absent from the interview 
sessions. However, this did not have a significant impact on the data as there 
was a liberal presence of respondents from the different variable 
classifications.  

 
Data Presentation 
The interview consisted of 12 questions. The main strategy involved 
classification of interviewee responses to each interview question as either 
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deep or surface. This judgement was made on the basis of the quality and 
depth of understanding inherent in the responses to each question. In 
accordance with the dictates of qualitative research, the researcher’s 
subjective judgement, underpinned by knowledge in the subject area was 
used to make the distinction between deep and surface responses. However, 
there were instances where an absolute classification could not be made. In 
these situations, a value of neutral was assigned to these responses. 

In order to explain the logic used in making the classification 
according to the deep and surface framework, a few examples of verbatim 
responses extracted from the interview transcripts are presented: 
Here is a student’s response to the question: How would you inter-change the 
value of two variables named x and y? 
 

Create another constant variable X equalling ten, just as a value, to 
switch it and, then switch A from ten to thirty, then you just add two 
X, or if you want, well A could be X, so you could say A plus two A, 
gives you the new A, and B minus A equals the new B, and C minus A 
equals the new C.  

 
An analysis of this response reveals that the student was able to accomplish 
the required task for the specific problem presented. However, the lack of 
generalisation curtailed any prospect of applying the same solution strategy 
to another set of input values for the same task. The respondent is thus 
classified as a surface learner in this instance. This classification is in direct 
contrast to the classification made for the following response for the same 
task by another student: 
 

I initialise a variable temporary, then I take the value of C, and I assign 
the value of B to C. Oh, before that, I will assign C to a temporary 
variable, and then I will assign B to C, and A to B and I will assign the 
temporary, that temporary to A.  
 

In the instance above, this response is indicative of expert understanding of 
the problem domain where the solution offered is applicable in a generalised 
context. Hence, the student is classified as a deep learner in this instance. 
Another demonstration of the deep and surface framework is presented in 
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relation to the applicability of an unconditional or ‘for … do’ loop. The 
student is given a scenario that required the computation of the average of a 
finite set of numbers. The interaction between student and interviewer is as 
follows:  
 

Student: I would use a Do loop (Student). 
Interviewer: Why can’t a For loop be used? 
Student: Because For loops are generally associated with arrays. 
Interviewer: Why wouldn’t you use a While loop? 
Student: You can use the While loop but I’m more comfortable with a 

For loop. 
 

The student’s response is correct in this instance. In a written 
examination that required implementation of the looping construct, the 
student would probably score maximum marks. However, the explanation for 
the choice of looping structure is indicative of a superficial or a surface 
learning demeanour. The student was not able to offer an adequate 
generalisation for the implementation of the ‘For’ looping construct. 
However, the student has been able to construct a personal cognitive model 
for looping that has been applied successfully to specific problem situations. 
This conclusion is established from the comment that ‘… “For” loops are 
generally associated with arrays’. The problem here is that this cognitive 
model is not completely reliable and there are exceptions where it will not 
work. Hence the response provided by the student in this instance is 
classified as surface learning.  

There were cases where it was not possible to make distinct 
classifications. This could be attributed to situations that required excessive 
intervention by the interviewer or cases where the responses given were 
somewhat confusing. These responses were interspersed with elements of 
deep understanding, but the impact of these responses was diluted by 
comments that may have been indicative of superficial understanding. In the 
following excerpt, the student was required to comment on the applicability 
of the ‘While’ loop in preference to a ‘Repeat’ loop. The following response 
was given: 

 
When they ask the question ‘do you want more items?’ and then do 
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everything it is the While Loop; If they ask the question after doing 
everything it is a Repeat Loop. 
 

In this case the answer is correct and also indicative of meaningful 
understanding of the difference between both loops. However, the student 
did not allude to the significance of the fact that the ‘Repeat’ loop was 
always executed at least once. The inability to make this generalisation 
begins to impart a measure of doubt to the inclination of classifying this 
response as indicative of deep learning. In cases such as this, there was no 
classification made, reflective of the researcher’s neutral stance towards the 
response.  
 
 

Data Analysis 
 After classifying the individual responses as either deep/surface/neutral, 
there was the additional dilemma of making an overall classification from the 
tally of individual deep and surface classifications. However, an analysis of 
the tally of deep and surface scores for each student revealed a discernable 
difference between the scores for each classification. This observation 
simplified the task of making an overall classification. A ‘snapshot’ of the 
deep and surface tallies is presented in Figure 1: 
 

Figure 1: ‘Snapshot’ of the Deep and Surface Data Tallies 
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In the instances where this difference was not that discernable or there were 
a significant number of neutral responses to individual questions, an overall 
classification of neutral was made. A graphical summation of the 
classifications is shown in Figure 2. 
 
 
 
 
 
 
 
 

 
Figure 2: Results of the Interview 
Analysis using the Deep and Surface 
Protocol 

 
 
 

Figure 2: Results of the Interview Analysis using the Deep and Surface 
Protocol 

 

Responses from 4 of the interviewees were classified as neutral. 
Hence, this leaves a complement sample of 31 as the focus of some 
descriptive statistical analysis. Looking at the graphical summary in Figure 2, 
it is evident that the majority of the students from the sample (52%) 
exhibited a surface approach to the learning of computer programming. 
Adopting a comparative stance, it is interesting to note that the proportion of 
deep learners turned out to be 42% and the proportion of surface learners 
was 58%. A by-product of this analysis is an inquisition into the feasibility of 
conducting an extrapolation from the sample onto the population. 

 
 

An Inferential Dimension 
The qualitative nature of this study precludes any adherence to the norms of 
quantitative methodology. However, in order to expand the potential of this 
study, an incursion into inferential statistics is undertaken. It should be noted 
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that this may justifiably be viewed with suspicion since it is not the intention 
of the study to make inferences about the population on the basis of the 
sample used. In the case in discussion, the sample size is 35. Lind et al. 
(2005: 273) remark that: 
 

statistical theory has shown that samples of at least 30 are sufficiently 
large to allow us to assume that the sampling distribution follows the  
normal distribution. 

 
The underlying qualitative ethos of the data gathering activities meant 

that with a sample size of approximately 12%, a confidence interval could be 
constructed for the population proportion. Applying the formula for a 

population proportion,  and using 

a 95% confidence interval, we obtain the interval range to be between 50% 
and 62%. This inference is that at least 50% (with a 62% worse-case 
scenario) of the population will display a surface learning demeanour 
towards computer programming.  

 
 

A Correlative Analysis with Formal Assessment 
A correlation between the students’ learning styles (deep or surface) was 
drawn with their performance in a computer programming examination. This 
correlation entailed a comparison between a dichotomous variable (learning 
style) and a continuous variable (examination mark) thereby necessitating the 
implementation of point bi-serial analysis. It is suggested in Glass and 
Hopkins (1996) that the point bi-serial correlation is mathematically 
equivalent to the Pearson product moment correlation. The result of this 
correlation is shown in Table 1. 
 
 

    Exam-Mark Deep-Surface 
Exam-Mark Pearson Correlation 1 .896 (**) 

  
Sig. (2-tailed)   .000 

  
N 34 34 

Deep-Surface Pearson Correlation .896 (**) 1 
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Sig. (2-tailed) .000   

  
N 34 34 

 ** Correlation is significant at the 0.01 level (2-tailed). 
Table 1: Point Bi-serial Correlation of Examination Mark and Learning 
Style 
 
 
Answers to the Research Questions 
The first sub-question of the current study entailed an inquiry to ascertain the 
pre-dominant learning style adopted by students in their learning of computer 
programming. The summary of results obtained (shown in Figure 2) indicate 
that at least 50% of the students adopt a surface style of learning in their 
efforts to acquire computer programming knowledge.  

The second sub-question entailed an inquiry to ascertain a possible 
correlation between the learning style adopted and students’ performance in 
computer programming assessment. The results of the correlation analysis 
(shown in Table 1) depict a strong relationship (0.896) between student 
performance in computer programming assessment and the learning style 
adopted. Students who adopt a deep approach to the learning of computer 
programming score significantly higher marks in computer related 
assessment than students who adopt a surface approach to the learning of 
computer programming.  

The main research question entailed an inquiry to establish the impact 
of learning styles on the acquisition of computer programming knowledge. 
The evidence provided by the answers to the 2 sub-questions indicates that 
students who adopt a surface strategy towards the learning of computer 
programming will not acquire mastery of computer programming skills. This 
may be reflected by a poor performance in computer programming 
assessment. The strong correlation between learning styles and performance 
in computer programming assessment indicate that the reverse is also true i.e. 
students who adopt a deep strategy towards the learning of computer 
programming will acquire mastery in computer programming. This may be 
reflected by a very good performance in computer programming assessment.  
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The current study indicates that the learning style adopted by students 
does have an impact on computer programming performance. However, it 
should be noted that this assertion does not necessarily constitute a causal 
relationship. The answers to the research questions were obtained via 
abductive reasoning, defined by Klopper (2008) as an approach where: 

 
the researcher accounts for her/his own inter-subjective influence on 
subjects’ responses and how s/he interprets the results. 
 
 

Conclusion 
This study was conducted in the context of poor student performance in 
computer programming. This study has established that a possible cause for 
poor performance is a lack of deep understanding of fundamental concepts 
that underpin the discipline of computer programming. The statistical 
inference from this study reveals that at least 50% of the population of 
students who will be enrolled in computer programming courses will adopt a 
surface approach towards the learning of computer programming. The 
implication is that these students will adopt an approach that entails the 
learning of programming code from a syntactic and semantic perspective in 
order to pass the course. This implication needs to be noted from a 
pedagogical perspective, necessitating the use of teaching and assessment 
strategies that encourage the inculcation of deep learning traits thereby 
minimising the prospect of superficial learning with the explicit purpose of 
passing a course. 

 Previous research in the pedagogy of computer programming has 
focused on the effect of quantitative variables such as gender, mathematical 
ability, previous programming experience and culture as possible predictors 
of programming performance. However, none of these studies have been 
conclusive in providing a definitive explanation for poor performance in 
computer programming related assessment. A significant, peripheral 
observation from the current study is that the teaching and learning of 
computer programming is a social phenomenon and the qualitative approach 
should be viewed as a viable option for future research efforts in this area. 
The deep and surface framework used in this study proved to be a reliable 
predictor of computer programming performance. 



Sanjay Ranjeeth  
 

 
 

350 

Recommendations 
An obvious recommendation from this study is that computer programming 
instruction has to be delivered in an environment that facilitates the adoption 
of a deep learning approach. However, the presentation of computer 
programming instruction at many institutes, including IS&T at UKZN is 
done on a platform that consists largely of complex visual development 
environments. This seems to be contrary to the requirements of a framework 
that promotes deep learning of computer programming. The complexity of 
the environment adds to the cognitive burden of learning the fundamentals of 
computer programming. In order to obviate this unwarranted complexity, a 
development environment consisting of an editor and a compiler will be 
sufficient to re-direct student focus onto obtaining a deep understanding of 
the principles that underpin computer programming.  
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