

Alternation 18,1 (2011) 336 - 353 ISSN 1023-1757 336

The Impact of
Learning Styles on the
Acquisition of
Computer Programming Proficiency

Sanjay Ranjeeth

Abstract
Computer Programming forms the basis from which most students of
information technology ‘launch’ themselves into further endeavours within
the discipline. However, statistical analysis of students’ performances in
programming related assessment tasks reveals that the mastery of computer
programming skills is not easily acquired. This assertion is supported by
reports of high failure rates in computer programming courses at several
academic institutes. This trend is also confirmed at the University of
KwaZulu-Natal (UKZN) where programming related assessments have
resulted in failure rates as high as 50%. In order to investigate this dilemma,
a phenomenographic approach is used to discover how students experience
the phenomenon of computer programming. The investigation is conducted
with reference to the deep and surface learning styles framework. Student
responses to interview questions on computer programming are classified
according to this framework. It was found that at least 50% of the
respondents adopted a surface approach towards the learning of computer
programming. A point bi-serial correlation was drawn with the students’
performance in a computer programming examination. There was a strong
correlation between the learning styles adopted by the students and their
performance in the computer programming examination.

Keywords: Computer programming, deep and surface learning,
phenomenography, point bi-serial, qualitative, stratified random sampling,

… Acquisition of Computer Programming Proficiency

337

pedagogy of computer programming, post-modernism, interpretivism

Introduction
The learning of computer programming has been identified as problematic by
the academic fraternity. Cognisance of this sentiment is attested to by a
growing number of literary inquisitions that attempt to identify factors that
may contribute towards obviating this stigmatic attachment. According to
Efopoulos et al. (2005), there is a growing research impetus in the area of
computer science education. This has resulted in the emergence of journals
that have either exclusively focused on the teaching of computer
programming or have a significant proportion of publications relating to the
teaching/learning of computer programming (e.g. Computer Science
Education, International Journal of Human-Computer Studies, Association
for Computing Machinery (ACM), Journal Storage (JSTOR)). A possible
explanation for this elevated interest in the teaching/learning of computer
programming is that:

software construction is a complex, socio-technical, cognitive
process that requires a combination of technical, social, analytical
and creative abilities (Rose, Heron & Sofat 2005).

Many studies on the learning of computer programming (e.g. Pea & Kurland
1984; Kaczmarczyk et al. 2010) allude to the deep misunderstanding of
programming related concepts by adult novice programmers. Hence, attempts
at resolving the impasse between novice and expert programming will not be
an easy task. A consequence of this dilemma is a declining set of standards in
elementary programming courses coupled with an increase in the failure rates
(Warren 1991). This trend is also confirmed currently at the University of
KwaZulu-Natal (UKZN) in the School of Information Systems and
Technology (IS&T) where programming related assessments have resulted in
failure rates as high as 50%. These sentiments tend to echo an unequivocal
belief that the acquisition of competence in computer programming is no
trivial achievement.

Sanjay Ranjeeth

338

The Positivist Paradigm and Computer Programming
The enigmatic status regarding the pedagogy of computer programming
seems be perpetuated by the failure of the positivist paradigm to embrace the
complexities inherent in such studies. The use of empiricism without
theoretical quality frameworks to underpin research efforts has resulted in a
paradoxical situation where the combined effort is disparate in nature.
According to Sheil (1981), the use of empirical methods to underpin research
in the domain of computer programming has not been conclusive from the
perspectives of reliability and generalisation. Hazzan et al. (2006) comment
that:

the ominous tendency of the Hawthorne effect to discredit
experimental research has resulted in the spawning of post-modern
methodologies that are empirically qualitative.

Traditionally, computer programming is considered to be a ‘scientific

activity’. Hence, a natural consequence should be that research in the field
would have strong inclinations towards positivism. However, Murnane
(1993: 216) goes on to counter this argument by asserting that:

no studies have shown that students who perform well in the
traditional sciences have any particular advantages when it comes to
programming …. [T]he development of a computer language may be
a scientific process, but the authoring of a program written in that
language is not.

Another significant contribution that can be added to the ‘mix’ is

made by Strauss and Corbin (1990:17) who claim that:

qualitative methods are used to better understand phenomenon about
which little is already known or to gain in-depth information that
may be difficult to convey quantitatively... embodying a research
demeanour that is not fully dependent on statistical procedures and
other means of quantification.

… Acquisition of Computer Programming Proficiency

339

According to Sanders, Lewis and Thornhill (2003:83), the invocation
of qualitative methods would classify a research project as interpretative.
The interpretive approach embodies an:

understanding of the social world from the ‘inside’, a world which
considers the minds of people and their interactions with one another
and their environment (Klopper 2008).

The evidence gathered from these literary sources suggests that

research into the learning of computer programming should embrace post-
modern philosophies such as interpretivism, as a viable option. This
embodies a research ethos that accommodates the mixing of diverse ideas
and methodologies that are qualitative in essence. This assertion is
corroborated by the claim made by Berglund et al. (2006) that:

the qualitative research paradigm enables the drawing of a more
solid and significant conclusion about how students learn computing.

Research Question
The current study embraces the ideals of post-modernism and engages the
phenomenographic research strategy to gain knowledge of the ways in which
learners come to grips with the concepts and principles of computer
programming. Phenomenography is defined by Eckerdal, Thune and
Berglund (2005) as:

an empirical, qualitative research approach where the object of
interest is how a certain phenomenon is experienced by a certain
group of people.

The deep and surface theoretical framework is employed to underpin

this study. A precise research question reads as follows:

• What is the impact of learning styles (as embodied by the deep and
surface framework for learning) on the acquisition of computer
programming knowledge?

Sanjay Ranjeeth

340

The sub-questions are as follows:

• What is the pre-dominant learning style employed by students
learning computer programming?

• What is the correlation between learning styles and students’
performance in computer programming assessment?

The Deep and Surface Framework
There have been many definitions of the concepts of deep and surface
learning (e.g. Booth & Morton 1997: 34; Martin & Saljo 1976; Rhem 1995;
Cope & Horan 1998; Hughes & Peiris 2006; Simon et al. 2006; Haripersad
2010). A common theme in these definitions is that the surface approach to
learning entails memorisation, rote learning and consumption of knowledge
from a quantity perspective for the purpose of reproduction at some
assessment forum (such as an examination). The deep approach to learning
entails intimate and quality driven understanding of content for the purpose
of application and extension beyond the factual dimension. Lewandowski et
al. (2005) cite various studies that are consistent with their assertion that:
‘experts form abstractions based on deep (semantic) characteristics rather
than on surface (syntactic) characteristics’. A listing of the characteristics of
the deep and surface learning style framework gleaned from the sources
mentioned above entail the following:

• Surface learning is related to passive processing that lacks reflection,
uses low-level meta-cognitive skills and is extrinsically motivated.

• Deep learning is a product of active processing that is intrinsically
motivated, reflective, and uses higher-level meta-cognitive strategies.

• Surface learning may result in good memory for facts and

definitions, but has a limited ability to understand or use them.

• Deep learning, results in facility of thought derived from linking
newly acquired facts and definitions into a conceptual framework of
existing knowledge.

… Acquisition of Computer Programming Proficiency

341

• Students who use surface learning may do well on tests that assess
learning through knowledge of facts and definitions; they may not
understand or be able to apply the memorised and superficially
processed information.

• Students who use deep learning are able to understand, apply, and

use information learned.

The impact made by this framework on the learning of computer
programming cannot be ignored and is corroborated by a study undertaken by
Booth (2001). Booth investigated the significance of the style of learning on
the acquisition of competence in computer programming. She classified
student programmers as either novices or experts. In order to make this
classification, she conducted interview sessions with students to ascertain
their level of understanding of computer programming. Individual responses
were classified as a demonstration of either deep or surface knowledge of
programming. The outcome of this exercise was an overall classification
labelling a student as either an expert programmer if the majority of
responses were classified as deep or a novice programmer if the majority of
responses were classified as surface. The findings of Booth’s
phenomenographic study into the understanding of computer programming
from a deep and surface perspective were that students who approached
learning to program as learning to code in a programming language or as a
pre-requisite for simply passing the course exhibited a surface approach to
learning thereby rendering themselves as novice programmers. In contrast,
students who focused on understanding the problem domain adequately in
order to produce a product that could be used in a professional environment
exhibited deeper learning traits thereby rendering themselves as experts. The
current study undertook to replicate this study on students in the School of
IS&T at UKZN.

Data Collection
It is reported in Hoepfl (1997) that interviews are the primary strategy for
data collection when the phenomenographic approach to research is
employed. The data collection strategy for the current study is commensurate

Sanjay Ranjeeth

342

with the assertion made by Hoepfl and aligned to a similar study conducted
by Bruce et al. (2006).

The primary target population consisted of students who had
completed the ISTN 212 course in computer programming in the School of
IS&T. This course was offered at the Durban and Pietermaritzburg campuses
of UKZN. The target population consisted of 261 students. Students were
informed of the voluntary nature of their participation as well the non-
obligatory demeanour of the interview questions. The interview sample
consisted of 35 students from the target population who participated in a one
hour semi-structured interview. In accordance with the sentiments expressed
by Hoepfl (1997) the objective was to seek information-rich cases that can be
studied in depth. This is an embodiment of an approach that prioritises the
depth that can be ascertained from the data source at the expense of the
volume of data.

According to the literature several variables could qualify as potential
detractors to any focused study on the learning of computer programming.
The significant factors identified were the influence of culture (Bishop-Clark
1995; Rose, Heron & Safat 2005), previous programming experience (Byrne
& Lyons 2001; Hagan & Markham 2002; Wilson & Shrock 2002; Allert
2004; Bergin & Reilly 2005; Govender 2009), gender (Bennedsen &
Caspersen 2005; Lau & Yuen 2009) and mathematics and problem solving
ability (Pillay & Jugoo 2005; Pioro 2006; Bennedssen & Caspersen 2008). In
order to accommodate and possibly minimise the influence of these factors, a
stratified random sampling strategy was employed. Interviewees were
selected in order to obtain adequate representation from the spectrum of
variables identified. Twenty students from each campus (Durban and
Pietermaritzburg) of UKZN were invited to participate in the interview
sessions. There was one student from the Pietermaritzburg campus and four
students from the Durban campus who were absent from the interview
sessions. However, this did not have a significant impact on the data as there
was a liberal presence of respondents from the different variable
classifications.

Data Presentation
The interview consisted of 12 questions. The main strategy involved
classification of interviewee responses to each interview question as either

… Acquisition of Computer Programming Proficiency

343

deep or surface. This judgement was made on the basis of the quality and
depth of understanding inherent in the responses to each question. In
accordance with the dictates of qualitative research, the researcher’s
subjective judgement, underpinned by knowledge in the subject area was
used to make the distinction between deep and surface responses. However,
there were instances where an absolute classification could not be made. In
these situations, a value of neutral was assigned to these responses.

In order to explain the logic used in making the classification
according to the deep and surface framework, a few examples of verbatim
responses extracted from the interview transcripts are presented:
Here is a student’s response to the question: How would you inter-change the
value of two variables named x and y?

Create another constant variable X equalling ten, just as a value, to
switch it and, then switch A from ten to thirty, then you just add two
X, or if you want, well A could be X, so you could say A plus two A,
gives you the new A, and B minus A equals the new B, and C minus A
equals the new C.

An analysis of this response reveals that the student was able to accomplish
the required task for the specific problem presented. However, the lack of
generalisation curtailed any prospect of applying the same solution strategy
to another set of input values for the same task. The respondent is thus
classified as a surface learner in this instance. This classification is in direct
contrast to the classification made for the following response for the same
task by another student:

I initialise a variable temporary, then I take the value of C, and I assign
the value of B to C. Oh, before that, I will assign C to a temporary
variable, and then I will assign B to C, and A to B and I will assign the
temporary, that temporary to A.

In the instance above, this response is indicative of expert understanding of
the problem domain where the solution offered is applicable in a generalised
context. Hence, the student is classified as a deep learner in this instance.
Another demonstration of the deep and surface framework is presented in

Sanjay Ranjeeth

344

relation to the applicability of an unconditional or ‘for … do’ loop. The
student is given a scenario that required the computation of the average of a
finite set of numbers. The interaction between student and interviewer is as
follows:

Student: I would use a Do loop (Student).
Interviewer: Why can’t a For loop be used?
Student: Because For loops are generally associated with arrays.
Interviewer: Why wouldn’t you use a While loop?
Student: You can use the While loop but I’m more comfortable with a

For loop.

The student’s response is correct in this instance. In a written
examination that required implementation of the looping construct, the
student would probably score maximum marks. However, the explanation for
the choice of looping structure is indicative of a superficial or a surface
learning demeanour. The student was not able to offer an adequate
generalisation for the implementation of the ‘For’ looping construct.
However, the student has been able to construct a personal cognitive model
for looping that has been applied successfully to specific problem situations.
This conclusion is established from the comment that ‘… “For” loops are
generally associated with arrays’. The problem here is that this cognitive
model is not completely reliable and there are exceptions where it will not
work. Hence the response provided by the student in this instance is
classified as surface learning.

There were cases where it was not possible to make distinct
classifications. This could be attributed to situations that required excessive
intervention by the interviewer or cases where the responses given were
somewhat confusing. These responses were interspersed with elements of
deep understanding, but the impact of these responses was diluted by
comments that may have been indicative of superficial understanding. In the
following excerpt, the student was required to comment on the applicability
of the ‘While’ loop in preference to a ‘Repeat’ loop. The following response
was given:

When they ask the question ‘do you want more items?’ and then do

… Acquisition of Computer Programming Proficiency

345

everything it is the While Loop; If they ask the question after doing
everything it is a Repeat Loop.

In this case the answer is correct and also indicative of meaningful
understanding of the difference between both loops. However, the student
did not allude to the significance of the fact that the ‘Repeat’ loop was
always executed at least once. The inability to make this generalisation
begins to impart a measure of doubt to the inclination of classifying this
response as indicative of deep learning. In cases such as this, there was no
classification made, reflective of the researcher’s neutral stance towards the
response.

Data Analysis
 After classifying the individual responses as either deep/surface/neutral,
there was the additional dilemma of making an overall classification from the
tally of individual deep and surface classifications. However, an analysis of
the tally of deep and surface scores for each student revealed a discernable
difference between the scores for each classification. This observation
simplified the task of making an overall classification. A ‘snapshot’ of the
deep and surface tallies is presented in Figure 1:

Figure 1: ‘Snapshot’ of the Deep and Surface Data Tallies

Sanjay Ranjeeth

346

In the instances where this difference was not that discernable or there were
a significant number of neutral responses to individual questions, an overall
classification of neutral was made. A graphical summation of the
classifications is shown in Figure 2.

Figure 2: Results of the Interview
Analysis using the Deep and Surface
Protocol

Figure 2: Results of the Interview Analysis using the Deep and Surface
Protocol

Responses from 4 of the interviewees were classified as neutral.
Hence, this leaves a complement sample of 31 as the focus of some
descriptive statistical analysis. Looking at the graphical summary in Figure 2,
it is evident that the majority of the students from the sample (52%)
exhibited a surface approach to the learning of computer programming.
Adopting a comparative stance, it is interesting to note that the proportion of
deep learners turned out to be 42% and the proportion of surface learners
was 58%. A by-product of this analysis is an inquisition into the feasibility of
conducting an extrapolation from the sample onto the population.

An Inferential Dimension
The qualitative nature of this study precludes any adherence to the norms of
quantitative methodology. However, in order to expand the potential of this
study, an incursion into inferential statistics is undertaken. It should be noted

… Acquisition of Computer Programming Proficiency

347

that this may justifiably be viewed with suspicion since it is not the intention
of the study to make inferences about the population on the basis of the
sample used. In the case in discussion, the sample size is 35. Lind et al.
(2005: 273) remark that:

statistical theory has shown that samples of at least 30 are sufficiently
large to allow us to assume that the sampling distribution follows the
normal distribution.

The underlying qualitative ethos of the data gathering activities meant

that with a sample size of approximately 12%, a confidence interval could be
constructed for the population proportion. Applying the formula for a

population proportion, and using

a 95% confidence interval, we obtain the interval range to be between 50%
and 62%. This inference is that at least 50% (with a 62% worse-case
scenario) of the population will display a surface learning demeanour
towards computer programming.

A Correlative Analysis with Formal Assessment
A correlation between the students’ learning styles (deep or surface) was
drawn with their performance in a computer programming examination. This
correlation entailed a comparison between a dichotomous variable (learning
style) and a continuous variable (examination mark) thereby necessitating the
implementation of point bi-serial analysis. It is suggested in Glass and
Hopkins (1996) that the point bi-serial correlation is mathematically
equivalent to the Pearson product moment correlation. The result of this
correlation is shown in Table 1.

 Exam-Mark Deep-Surface
Exam-Mark Pearson Correlation 1 .896 (**)

Sig. (2-tailed) .000

N 34 34

Deep-Surface Pearson Correlation .896 (**) 1

Sanjay Ranjeeth

348

Sig. (2-tailed) .000

N 34 34

 ** Correlation is significant at the 0.01 level (2-tailed).
Table 1: Point Bi-serial Correlation of Examination Mark and Learning
Style

Answers to the Research Questions
The first sub-question of the current study entailed an inquiry to ascertain the
pre-dominant learning style adopted by students in their learning of computer
programming. The summary of results obtained (shown in Figure 2) indicate
that at least 50% of the students adopt a surface style of learning in their
efforts to acquire computer programming knowledge.

The second sub-question entailed an inquiry to ascertain a possible
correlation between the learning style adopted and students’ performance in
computer programming assessment. The results of the correlation analysis
(shown in Table 1) depict a strong relationship (0.896) between student
performance in computer programming assessment and the learning style
adopted. Students who adopt a deep approach to the learning of computer
programming score significantly higher marks in computer related
assessment than students who adopt a surface approach to the learning of
computer programming.

The main research question entailed an inquiry to establish the impact
of learning styles on the acquisition of computer programming knowledge.
The evidence provided by the answers to the 2 sub-questions indicates that
students who adopt a surface strategy towards the learning of computer
programming will not acquire mastery of computer programming skills. This
may be reflected by a poor performance in computer programming
assessment. The strong correlation between learning styles and performance
in computer programming assessment indicate that the reverse is also true i.e.
students who adopt a deep strategy towards the learning of computer
programming will acquire mastery in computer programming. This may be
reflected by a very good performance in computer programming assessment.

… Acquisition of Computer Programming Proficiency

349

The current study indicates that the learning style adopted by students
does have an impact on computer programming performance. However, it
should be noted that this assertion does not necessarily constitute a causal
relationship. The answers to the research questions were obtained via
abductive reasoning, defined by Klopper (2008) as an approach where:

the researcher accounts for her/his own inter-subjective influence on
subjects’ responses and how s/he interprets the results.

Conclusion
This study was conducted in the context of poor student performance in
computer programming. This study has established that a possible cause for
poor performance is a lack of deep understanding of fundamental concepts
that underpin the discipline of computer programming. The statistical
inference from this study reveals that at least 50% of the population of
students who will be enrolled in computer programming courses will adopt a
surface approach towards the learning of computer programming. The
implication is that these students will adopt an approach that entails the
learning of programming code from a syntactic and semantic perspective in
order to pass the course. This implication needs to be noted from a
pedagogical perspective, necessitating the use of teaching and assessment
strategies that encourage the inculcation of deep learning traits thereby
minimising the prospect of superficial learning with the explicit purpose of
passing a course.

 Previous research in the pedagogy of computer programming has
focused on the effect of quantitative variables such as gender, mathematical
ability, previous programming experience and culture as possible predictors
of programming performance. However, none of these studies have been
conclusive in providing a definitive explanation for poor performance in
computer programming related assessment. A significant, peripheral
observation from the current study is that the teaching and learning of
computer programming is a social phenomenon and the qualitative approach
should be viewed as a viable option for future research efforts in this area.
The deep and surface framework used in this study proved to be a reliable
predictor of computer programming performance.

Sanjay Ranjeeth

350

Recommendations
An obvious recommendation from this study is that computer programming
instruction has to be delivered in an environment that facilitates the adoption
of a deep learning approach. However, the presentation of computer
programming instruction at many institutes, including IS&T at UKZN is
done on a platform that consists largely of complex visual development
environments. This seems to be contrary to the requirements of a framework
that promotes deep learning of computer programming. The complexity of
the environment adds to the cognitive burden of learning the fundamentals of
computer programming. In order to obviate this unwarranted complexity, a
development environment consisting of an editor and a compiler will be
sufficient to re-direct student focus onto obtaining a deep understanding of
the principles that underpin computer programming.

References
Allert, J 2004. Learning Style and Factors Contributing to Success in an

Introductory Computer Science Course. Proceedings of IEEE
International Conference on Advanced Learning Technologies, IEEE
Computer Society.

Bennedsen, J & M Caspersen 2005. Revealing the Programming Process.
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education 37: 186-190.

Bennedsen, J & M Caspersen 2008. Abstraction Ability as an Indicator of
Success for Learning Computing Science. Proceedings of the Fourth
international Workshop on Computing Education Research.

Bergin, S & R Reilly 2005. Programming: Factors that Influence Success.
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education.

Berglund, A, M Daniels & A Pears 2006. Qualitative Research Projects in
Computing Education Research: An Overview. ACM International
Conference Proceeding Series 165: 25-33.

Bishop-Clarke, C 1995. Cognitive Style, Personality and Computer
Programming. Computers in Human Behaviour 11,2: 241-260.

Booth, S 2001. Learning to Program as entering the Datalogical Culture: A

… Acquisition of Computer Programming Proficiency

351

 Phenomenographic Exploration. 9th European Conference for Research
on Learning and Instruction, Fribourg, Switzerland.

Booth, S & F Morton 1997. Learning and Awareness. Lawrence Erlbaum
Associates Publishers.

Bruce, S, G Mohay, G Smith, I Stoodly & R Tweedale 2006. Transforming
IT Education: Promoting a Culture of Excellence. Informing Science
Press California.

Byrne, P & G Lyons 2001. The Effect of Student Attributes on Success in
Programming. Sixth Annual Conference on Innovation and Technology
in Computer Science Education.

Cope, C & P Horan 1998. Toward an Understanding of Teaching and
Learning about Information Systems. ACM International Conference
Proceeding Series 3:188 - 197.

Eckerdal, A, M Thune & A Berglund 2005. What Does it Take to Learn
Programming Thinking? Proceedings of the 2005 International
Workshop on Computing Education Research.

Efopoulos, V, V Dagdilelis, G Evangelidis & M Satratzemi 2005. WIPE: A
Programming Environment for Novices. Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education. New York: ACM Press.

Glass, V & KD Hopkins 1996. Statistical Methods in Education and
Psychology. Boston: Allyn and Bacon/ Prentice Hall.

Govender, I 2009. The Learning Context: Influence on Learning to Program.
Computers & Education 53,4.

Hazzan, O, Y Dubinsky, L Eidelman, V Sakhnini & M Teif 2006. Qualitative
Research in Computer Science Education. ACM SIGCSE Bulletin 38:1.

Hoepfl, MC 1997. Choosing Qualitative Research: A Primer for Technology
Education Researchers. Journal of Information Technology 9,1: 47-63.

Haripersad, R 2010. Deep and Surface Learning of Elementary Calculus
Concepts in a Blended Learning Environment. Proceedings of the 7th
WSEAS International Conference on Engineering Education.

Hughes, J & J Peiris 2006. Assisting CS1 Students to Learn: Learning
Approaches and Object-Oriented Programming. Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education.

Sanjay Ranjeeth

352

Kaczmarczyk, L, E Petrick, J East, & G Herman 2010. Identifying Student
Misconceptions of Programming. Proceedings of the 41st ACM
Technical Symposium on Computer Science Education.

Klopper, R 2008. Principles of Qualitative Research. Lecture Given at the
School of Information Systems & Technology, University of KwaZulu-
Natal.

Lewandowski, G, A Gutschow, R McCartney, K Sanders, & D Shinners-
Kennedy 2005. What Novice Programmers Don’t Know. Proceedings of

 the 2005 International Workshop on Computing Education.
Lau, W & A Yuen 2009. Exploring the Effects of Gender and Learning

Styles on Computer Programming Performance: Implications for
Programming Pedagogy. British Journal of Educational Technology
40,4: 696 - 712.

Lind, D, G Marchal & S Wathan 2005. Statistical Techniques in Business
Economics. McGraw-Hill, NY.

Marton, F & R Säljö 1976. On Qualitative Differences in Learning: Outcome
and Process. British Journal of Educational Psychology 46: 4-11.

Murnane, JS 1993. The Psychology of Computer Languages for Introductory
Programming Courses. New Ideas in Psychology 11,2: 213-228.

Pea, DR & M Kurland 1984. On the Cognitive Effects of Learning Computer
Programming. New Ideas in Psychology 2,2: 137-168.

Pillay, N & VR Jugoo 2005. An Investigation into Student Characteristics
Affecting Novice Programming Performance. ACM SIGCSE Bulletin
Archive 37,4: 107-110.

Rhem, J 1995. Deep/Surface Approaches to Learning: An Introduction. The
National Teaching and Learning Forum. Accessed on 2nd March 2009
http://www.ntlf.com/html/pi/9512/article1.htm

Rose, E, J le Heron, & I Sofat 2005. Student Understanding of Information
Systems Design, Learning and Teaching: A Phenomenographic
Approach. Journal of Information Systems Education 16,1: 183-195.

Sheil, BA 1981. The Psychological Study of Programming. ACM Computing
Surveys (CSUR) Archive 13,1: 101 - 120.

Sanders, M, P Lewis & A Thornhill 2003. Research Methods in Business.
Pearson Education Limited, New Jersey

Simon, S, S Fincher, A Robins, B Baker, I Box, Q Cutts, M de Raadt, P
Haden, J Hamer, M Hamilton, R Lister, M Petre, K Sutton, D Tolhurst &

… Acquisition of Computer Programming Proficiency

353

J Tutty 2006. Predictors of Success in a First Programming Course.
Proceedings of the 8th Australian Conference on Computing Education
52: 189 - 196.

Strauss, A & J Corbin 1990. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Newbury Park, CA: Sage
Publications Inc.

Warren, P 2001. Teaching Programming Languages Using Scripting
Languages. Journal of Computing Sciences in Colleges 17,2: 205-216.

Wilson, BC & S Shrock 2002. Contributing to Success in an Introductory
Computer Science Course: A Study of Twelve Factors. Proceedings of
the 32th SIGCSE Technical Symposium on Computer Science Education.
ACM Press, NY.

S Ranjeeth
School of Information Systems & Technology

University of KwaZulu-Natal
South Africa

ranjeeths@ukzn.ac.za

mailto:ranjeeths@ukzn.ac.za�

	Abstract
	pedagogy of computer programming, post-modernism, interpretivism
	Introduction
	The Positivist Paradigm and Computer Programming
	Research Question
	The Deep and Surface Framework
	Data Collection
	Data Presentation
	Data Analysis
	An Inferential Dimension
	A Correlative Analysis with Formal Assessment
	Answers to the Research Questions
	Conclusion
	Recommendations
	References

